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Abstract 
 

This paper explores the use of deformable 
registration (speckle tracking) as a method for 
obtaining point correspondences on sequences of 
tongue images acquired via ultrasound in order to 
estimate tongue velocity and displacement. We model 
the velocity field as smooth Bspline functions and 
estimate it from adjacent frames. This model enables 
us to accumulate the motion and hence calculate the 
displacement from the first frame to any frame in the 
image sequence. Specifically, it provides the 
displacement estimates on the curve, enabling us to 
introduce “virtual flesh point markers” on the tongue 
surface. We tested the algorithm on ultrasound image 
sequences that were taken during the production of 
domain initial vowels in two different prosodic 
domains – word initial and accentual phrase initial. 
The results demonstrate the utility of the algorithm in 
quantification of tongue motion in speech. 

1  Introduction 

The main goal of the use of imaging techniques in 
speech research is to improve our understanding of 
the configuration of the articulators as well as the 
change of the configuration of the articulators over 
time during speech.  Ultrasound is increasingly used 
as an imaging tool for speech research, and has 
proven successful in imaging the configuration of the 
tongue with respect to the hard palate [9], and [11].  

The classical approach to quantify tongue motion 
is by extracting the contours of the tongue surface 
from ultrasound using active contours [4]. However, 
this approach can only measure the shape of the 
tongue. In contrast to imaging methods such as x-ray 

microbeam and electromagnetic articulography that 
track flesh points on the tongue, the above mentioned 
ultrasound technique has limited capability to provide 
point correspondences. This makes it difficult to 
quantitatively compare or average the contours taken 
at two different points of time. Various curve post-
processing approaches to address this problem were 
introduced in  [6] and [8]. However, the success of 
these methods in deriving corresponding points were 
limited due to the drastic change in length and shape 
of the tongue during speech. Moreover, these 
algorithms only exploit the information at the tongue 
surface and hence are not robust to faint contours 
(due to the tongue surface being orthogonal to the 
transducer) and exclusions.  

The main objective of the current paper is to 
explore speckle tracking as a method for obtaining 
point correspondences on sequences of ultrasound 
images of the tongue. Although speckle is often 
considered as an artifact or noise in conventional 
ultrasound imaging, it provides a signature for precise 
motion tracking. The acoustic scatterers producing 
the speckle patterns displace with the tissue, and 
hence lead to moving speckle patterns that can be 
tracked. This property has been exploited to estimate 
motion in a wide range of applications including in 
echocardiography and elasticity imaging [7], [10]. 
The current paper extents this approach to tongue 
imaging, thus providing point correspondences and 
additional robustness.  

Traditional approaches to speckle tracking 
include block matching and optical flow-based 
schemes. Both schemes work well for sequences with 
small motion and simple deformations (e.g. rotation, 
translation, shear). Given the low frame-rate of 
commercial ultrasound scanners and the complex 

8th International Seminar on Speech Production 53

ISSP 2008



motion of the tongue, they may fail to capture the 
temporal variations of the tongue. Moreover, these 
methods, being local in nature, treat each 
neighborhood independently. They are also not very 
robust to noise and artifacts. Hence, we adapt the 
registration based motion estimation framework, 
introduced in [1] to estimate the tongue motion. In 
contrast to traditional algorithms, this approach can 
model complex deformations and perform global 
estimation. It uses the information from the entire 
image to derive the fit. In contrast to [1], where each 
frame is deformed with respect to the first one, we 
deform each frame to the next one. This approach 
makes our approach more robust to speckle 
decorrelation, which may occur when scatterers move 
away from each other due to the large deformation of 
the tongue, and thus change the speckle pattern. Out 
of plane motion also changes the pattern and this 
change is also often referred as decorrelation. 

The registration scheme estimates the 
deformation between consecutive frames; the 
combined deformation map enables us to track any 
point on a specified image in the sequence to other 
images. Specifically, one can track virtual markers on 
the tongue surface in any specific frame. Moreover, 
this approach can also derive the tongue contour 
information similar to the traditional approaches 
described in [4] and [6].  

In order to illustrate our speckle tracking method, 
we tested it on ultrasound data acquired during 
speech. We obtained sequences of tongue curves 
during which the tongue transitioned from a velar 
stop consonant [g] in a preceding word to a word 
initial mid-back vowel [�] in two different prosodic 
environments (word initial (Wd) and initial in an 
accentual phrase (AP)). We have chosen this test 
material as it shows the well-known phenomenon of 
domain initial strengthening [2]. The results confirm 
our expectations - based on previous research - that 
we find more displacement of the tongue in the 
higher prosodic domain (AP) compared to the  word 
initial domain which is lower on the prosodic 
hierarchy.  

2  Model based speckle tracking 

The classical approach to track speckles to 
quantify motion information is block matching [3]. 
The main drawbacks of these local approaches are (a) 

constant regions can provide insufficient velocity 
cues, leading to poor estimation results (b) inability 
to introduce smoothness priors in the tracking process 
(c) local nature of tracking, leading to poor 
robustness. Hence, we adapt the non-rigid registration 
scheme, originally due to Carbayo et al. to quantify 
the motion information from ultrasound sequences 
[1].  
 
2.1 Deformation model 

 

We model the deformation between two 
consecutive images by the vector function:   

g(x, y) = gx (x,y),gy (x, y)( ) . 
The functions gx  and gy  provide the co-ordinates in 
the target image, which correspond to x  and y  in the 
source image. Thus, the source image is deformed 
(by the deformation map g(x, y)) to the target image: 

Is gx (x, y),gy (x,y)( ) � It (x, y) . 
In contrast to [1], where they deformed every image 
to a the first image in the sequence, we map every 
image to the one immediately preceeding it: 

In�1 gn (x)( ) � In (x). 
As discussed previously, this makes the algorithm 
more robust to speckle decorrelation. Once 
gi(x, y),i = 0..n  are obtained, the deformation of the 
tongue from the first image to the last is obtained as  

  
gn,1 = gn o gn�1 oKg1. 

We model each of the deformations as Bspline 
functions, in terms of the coefficients c,d{ } , where 

gx (x, y) = x + ck,l �
k,l= 0
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Here, �  are cubic Bspline functions and T  is the 
grid spacing. The main advantage of this 
representation is that the value and the derivatives of 
a Bspline model can be exactly evaluated and it 
satisfies multiresolution properties. Moreover, cubic 
Bsplines possess good approximation and 
smoothness properties. 
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2.2 Elastic registration for speckle tracking 

 

The goal of the elastic registration scheme is to 
determine the deformation map between the source 
and target images In�1 and In . We will use the sum 
of square differences between the deformed source 
image and the target image: 

Cn = In�1 gn (x)( ) � In (x)
2
 

as the criterion. The deformation is estimated as 
gn = arg min

g
Cn . 

Thanks to the Bspline deformation model, this boils 
down to the determination of the coefficients 

cn ,dn{ } . Since this is a non-linear optimization 
algorithm, we will use the steepest descend 
optimization algorithm to determine the optimal 
parameters.   

3 Applying speckle tracking to linguistic data 

3.1 Data acquisition and speech material 

We applied our method to ultrasound images of 
the tongue. The images were acquired on a Siemens 
Anatres Sonoline ultrasound machine while the 
subject read the target sentences. The subject was a 
female native speaker of American English and her 
head was stabilized during data collection. Table 1 
shows the sentences produced by the subject. 

We used our method to compare velocity and 
displacement of the tongue during vowel production 
in the two different environments. Based on research 
describing domain initial strengthening [2], [5], we 
predict that the tongue is displaced more with respect 
to the preceding velar consonant in the prosodic 
domain that is higher on the prosodic hierarchy. 
Therefore, we expect more displacement in the AP 
condition compared to the Wd condition. 

 
Table 1. Test sentences in the two prosodic 
conditions with the target vowel underlined. 
 Test Sentences 

AP Silk, auk, and bolus are rare words. 
Wd The silk auk won’t survive the winter. 
 

3.2 Results 

We will first illustrate the utility of the 
registration algorithm in tracking flesh point markers. 
We considered the first two frames of the Wd 
sequence in Fig. 1; these are the most challenging 
cases due to the large velocity of the tongue (see Fig 
3). Virtual flesh point markers are added on the 
source image (1-a). The location of these markers in 
the target image (second frame) is shown in (b). Note 
that the markers are not aligned with the tongue 
surface. Using the registration algorithm, we 
estimated the deformation and tracked the location of 
the markers on the target image. Note from (f) that 
the deformed markers are in perfect alignment with 
the tongue surface in the target image. The low value 
of errors (absolute difference of deformed source 
image and target image) in (g) in comparison to (c) 
also indicates the accuracy of the registration. Note 
that the errors are at the noise level and no structures 
are visible. 

 

 
a. Source with markers   b. Target with src markers    c. |Source - Target| 

 
 e. Deformation              f. Target with def. markers   g. |Def. Src - Target| 

Figure 1: Illustration of the registration algorithm. (a) is the 
source image with virtual tongue markers (b) is the target 
image (next frame) with the markers at the same location as 
the source. (c) is the absolute difference between the source 
and the target images. (e) is the estimated deformation and (f) 
is the target image with the deformed markers. (g) is the 
difference between the deformed source and the target images.  

 
Figure 2 shows the utility of the algorithm in 

estimating the horizontal and vertical displacement of 
the tongue during the AP and Wd sequences (from 
the consonant to the vowel). The AP sequence has 11 
frames, while the Wd sequence has 4 frames. It is 
shown that the tongue settles for a lower vertical 
position at the vowel location in the AP sequence, in 
comparison to the Wd sequence. The top row is the 
horizontal and vertical displacements corresponding 
to the AP case. The bottom row indicates the 
displacements in the Wd case. Note that the 
displacements are larger in the AP case as expected. 
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           AP horizontal                  AP vertical  

 
            Wd horizontal                  Wd vertical 

Figure 2: Comparison between the horizontal and 
vertical displacements of the tongue between the 
consonant and the vowel, estimated by the registration 
algorithm. The results are overlaid on the initial 
ultrasound image (during the consonant). Here, high 
intensity of red indicates large displacement values.  

 
Figure 3 illustrates the estimation of the 

horizontal and vertical velocities of the tongue 
during the AP and Wd sequences. The top row is 
the horizontal and vertical displacements 
corresponding to the AP case, while the bottom 
row indicates the Wd case. Note that the 
estimated velocities are much larger in Wd case.  
 

 
           AP horizontal                         AP vertical  

 
                 Wd horizontal               Wd vertical 

Figure 3: Comparison between the horizontal and 
vertical velocities of the tongue at the consonant 
location, estimated by the registration algorithm. The 
high intensity of red indicates large velocities.  

4 Discussion and Conclusion 

We have explored the use of speckle 
tracking/registration as a means of quantifying tongue 
motion from ultrasound image data. In contrast to 

standard approaches that track the tongue surface [4], 
we obtain a dense motion field. This enables us to 
track virtual flesh markers on the tongue to the 
subsequent images, enabling accurate quantitative 
comparison. We illustrated the utility of the algorithm 
in comparing two prosodic conditions. The estimated 
velocities and displacements are in agreement with 
expected results. In short, we found the proposed 
scheme to be a powerful tool in quantifying and 
analyzing tongue motion.  
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